
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Prototype of the basic version of LinuxSSI
D2.2.7

Due date of deliverable: November 31th, 2007
Actual submission date: January 10th, 2007

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP2.2
Task number: T2.2.1

Responsible institution: INRIA
Editor & and editor’s address: Matthieu Fertré

IRISA/INRIA
Campus de Beaulieu

35042 RENNES Cedex
France

Version 1.0 / Last edited by Matthieu Fertré / January 9th, 2008

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.1 18/10/07 Matthieu Fertré INRIA Initial template
0.2 19/10/07 Matthieu Fertré INRIA Initial text for User guide chapter
0.3 19/10/07 Matthieu Fertré INRIA Initial text for installation chapter
0.4 19/10/07 Matthieu Fertré INRIA Initial text for prototype description
0.5 22/10/07 Matthieu Fertré INRIA Add NFSROOT documentation link in installation

chapter, precise version of Kerrighed latest stable re-
lease in prototype description chapter

0.6 22/10/07 Matthieu Fertré INRIA User documentation about node(s) addition, removal.
0.7 23/10/07 Matthieu Fertré INRIA Introduction text
0.8 23/10/07 Matthieu Fertré INRIA Executive summary
0.9 26/10/07 John Mehnert-Spahn UDUS User documentation about checkpointing

0.10 26/10/07 Marko Novak XLAB User’s documentation for customizable scheduler
0.11 29/10/07 Adrien Lebre INRIA kDFS documentation and minor typos
0.12 12/12/07 Christine Morin INRIA executive summary, introduction and conclusion
0.13 19/12/07 Matthieu Fertré INRIA comments from Jerome Robert
1.0 09/01/08 Matthieu Fertré INRIA comments from Ana Oprescu

Reviewers:
Jérôme Robert (EADS) and Ana Oprescu (VUA)

Tasks related to this deliverable:
Task No. Task description Partners involved◦
T2.2.1 Federation Management INRIA∗, XLAB, UDUS, NEC, SAP, ICT

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

D2.2.7 IST-033576

Executive Summary

LinuxSSI-XOS is the foundation layer of the XtreemOS cluster flavour. LinuxSSI-
XOS is a standard Linux kernel modified in two ways: first, to incorporate the
modifications related to VO support (the same kind of modifications as those used
to build Linux-XOS[2]) and second, to integrate distributed resource management
services to provide a single system image (i.e. modifications related to LinuxSSI).

This document relates to the prototype of LinuxSSI delivered at M18 (Novem-
ber 2007) and based on the specifications described in [2]. LinuxSSI leverages the
existing Kerrighed SSI technology developed by INRIA in cooperation with EDF
[9, 10, 11, 12, 14]. For XtreemOS-G services, a cluster executing LinuxSSI-XOS
will be seen as a powerful PC executing Linux-XOS.

LinuxSSI leverages Kerrighed version 2.2.0 by offering the following function-
alities: a distributed file system, kDFS, exploiting disks attached to cluster nodes
[7], a customizable scheduler [3], a reconfiguration framework allowing a system
administrator to add or stop nodes without rebooting the whole cluster [6], a mech-
anism to checkpoint/restart individual processes and parallel applications based on
the shared memory communication paradigm [5].

This deliverable explains how to install and configure a LinuxSSI cluster. With
the current prototype, NFSRoot, which allows to deploy a cluster on nodes in a
diskless way, needs to be enabled. Then, installing LinuxSSI requires the configu-
ration of a TFTP server, a DHCP server, and an NFS server. Moreover, the system
image needs to be configured for diskless nodes. The whole installation process
is described. This document also provides a user guide for the functionalities spe-
cific to LinuxSSI (not included in Kerrighed official release V2.2.0). In particular,
we explain how to format and mount a kDFS partition, how to load and unload a
probe or a scheduling policy based on the Pluggable Probes and Scheduling Poli-
cies (PlugProPol) framework. We also present the commands available for the
system administrator to add or remove a cluster node without stopping the whole
cluster. Finally, we present the checkpoint/restart command-line API.

Based on this first prototype of LinuxSSI, the next steps in our future work are
three-folds. Our first priority for the coming months is to integrate LinuxSSI with
Linux-XOS mechanisms to get the first LinuxSSI-XOS prototype. We also need
to finalize some functionalities. Then we plan to implement advanced features as
described in D2.2.2, D2.2.3, D2.2.4, D2.2.5, D2.2.6 deliverables [8, 5, 6, 7, 3].

The prototype described in this document results from the joint work carried
out in the framework of the WP2.2 workpackage by INRIA, NEC, XLAB, UDUS,
ICT and SAP and from discussion with other partners and with key developers from
the Kerrighed open source community (external to XtreemOS consortium). INRIA,
NEC, XLAB, UDUS, contributed to the implementation of LinuxSSI prototype.

1/32 XtreemOS–Integrated Project

IST-033576 D2.2.7

XtreemOS–Integrated Project 2/32

Contents

1 Introduction 5

2 Brief description of the prototype 7

3 Installation and configuration notes 9
3.1 Enabling NFSRoot . 9

3.1.1 Configuring TFTP server 10
3.1.2 Configuring DHCP server 10
3.1.3 Configuring NFS server 12
3.1.4 Create and configure system image for diskless nodes . . . 13

3.2 LinuxSSI source download . 15
3.3 LinuxSSI installation . 15

3.3.1 Prerequisites . 15
3.3.2 Installation . 16
3.3.3 Configuration . 17

4 User’s guide 19
4.1 Overview about using LinuxSSI 19
4.2 Using advanced features of LinuxSSI 19

4.2.1 Using kDFS . 19
4.2.2 Taking advantage of the global scheduler 21
4.2.3 Adding and removing node(s) in the cluster 25
4.2.4 Checkpointing/Restarting application 26

5 Conclusion 29

3/32

IST-033576 D2.2.7

XtreemOS–Integrated Project 4/32

Chapter 1

Introduction

LinuxSSI-XOS is the foundation layer of the XtreemOS cluster flavour. LinuxSSI-
XOS is a standard Linux kernel modified in two ways: first to incorporate the
modifications related to the VO support (the same kind of modifications as those
used to build Linux-XOS and described in [2]) and secondly to integrate distributed
resource management services to provide a single system image (that is to say
modifications related to LinuxSSI).

This document relates to the prototype of LinuxSSI delivered at M18 (Novem-
ber 2007) and based on the specifications described in [2]. LinuxSSI leverages
the existing Kerrighed SSI technology developed by INRIA in cooperation with
EDF [9, 10, 11, 12, 14]. A Linux SSI operating system provides the illusion that a
cluster is a virtual multiprocessor machine executing Linux. For XtreemOS-G ser-
vices, a cluster executing LinuxSSI-XOS will be seen as a powerful PC executing
Linux-XOS.

The prototype described in this document results from the joint work carried
out in the framework of the WP2.2 workpackage by INRIA, NEC, XLAB, Düs-
seldorf University, ICT and SAP and from discussion with other partners and with
key developers from the Kerrighed open source community (external to XtreemOS
consortium). INRIA, NEC, XLAB, Düsseldorf University contributed to the im-
plementation of LinuxSSI prototype.

This deliverable is organized as follows. First we present in Section 2 a brief
description of the functionalities implemented in LinuxSSI current prototype. These
functionalities are essentially a distributed file system exploiting disks attached to
cluster nodes [7], a customizable scheduler [3], a reconfiguration framework allow-
ing a system administrator to add or stop nodes without rebooting the whole clus-
ter [6], mechanisms to checkpoint/restart processes and parallel applications based
on the shared memory communication paradigm [5]. In Section 3, we present
how to install and configure the current LinuxSSI prototype. In Section 4, a user
guide is provided for the functionalities specific to LinuxSSI. Section 5 concludes
summarizing the current state of LinuxSSI and stating our priorities in LinuxSSI
implementation plan.

5/32

IST-033576 D2.2.7

XtreemOS–Integrated Project 6/32

Chapter 2

Brief description of the prototype

LinuxSSI operating system provides the illusion that a cluster is a virtual multi-
processor machine executing Linux. For XtreemOS-G services, a cluster execut-
ing LinuxSSI-XOS will be seen as a powerful PC executing Linux-XOS. Thus,
LinuxSSI-XOS is a standard Linux kernel modified in two ways: firstly to in-
corporate the modifications related to the VO support and secondly to integrate
distributed resource management services to provide a single system image.

This prototype of LinuxSSI does not include VO support but focus on services
needed for single system image. It is based on the latest development version of
Kerrighed operating system with additional features developed in the framework
of the WP2.2 by INRIA, NEC, XLAB, Düsseldorf University, ICT and SAP. Ker-
righed technology has been originally developed by INRIA in collaboration with
EDF and is now maintained by Kerlabs and the Kerrighed community.

In addition to the latest stable release of Kerrighed operating system (2.2.1),
LinuxSSI 1.0 provides

• support of IPC semaphores and IPC message queues;

• the beta version of KDFS: a distributed file system;

• a global customizable scheduler;

• experimental checkpoint/restart of application with shared memory;

• experimental reconfiguration mechanisms allowing administrator to add or
remove node(s) in the cluster.

7/32

IST-033576 D2.2.7

XtreemOS–Integrated Project 8/32

Chapter 3

Installation and configuration
notes

The whole installation and configuration procedure in this document is based on
Kerrighed installation manual which can be found on:

http://www.kerrighed.org/wiki/index.php/UserDoc.
Every user who wants to install LinuxSSI is advised to first check Kerrighed

documentation since installation procedure of LinuxSSI is very similar to the one
of Kerrighed.

3.1 Enabling NFSRoot

Before we can start compiling and configuring LinuxSSI, we have to establish the
infrastructure for booting computers via network (so-called “network boot” or “net
boot”). Since version 2.1.0 of Kerrighed, the preferred way is to use cluster with
diskless nodes for running LinuxSSI. This kind of cluster consists of a single server
which has an image of LinuxSSI system stored on its hard disk and multiple clients.
These clients don’t have any operating system installed. Instead, they receive their
system image from the server via network boot. This is accomplished by using
so-called “NFSRoot” technique, which basically means that we are running an
operating system with its root file system (i.e. “/” in Linux) mounted via NFS
(Network File System).

The procedure which we are describing below is based on “Kerrighed on NF-
SROOT” instructions, which can be found on [1]. (They are the best place to look
when trying to establish NFSRoot infrastructure). In order to enable NFSRoot, you
have to setup three server daemons installed on your server:

• DHCP (Dynamic Host Configuration Protocol): this daemon assigns IP’s
to diskless clients and initiates network boot sequence. Under Debian, it is
deployed by installing dhcp3-server package.

9/32

http://www.kerrighed.org/wiki/index.php/UserDoc

IST-033576 D2.2.7

• TFTP (Trivial File Transfer Protocol): it allows clients to download config-
uration, kernels, ramdisks, etc. Under Debian, it is deployed by installing
tftpd-hpa package.

• NFS: it is needed so diskless clients can mount their root file systems to the
server. Under Debian, it is deployed by installing nfs-kernel-server package.

• BIND (Domain Name System (DNS) server): it is needed if you are planning
to put LinuxSSI cluster on a sub-network which is separated from the rest of
the company LAN.

3.1.1 Configuring TFTP server

To configure tftpd-hpa server, edit the /etc/default/tftpd-hpa file. If the file doesn’t
exist, create it:

Default for tftpd-hpa
RUN_DAEMON="yes"
OPTIONS="-l -s /var/lib/tftpboot"

The “/var/lib/tftpboot” directory is the place on your server where you will
store kernel, ramdisk and GRUB bootloader configuration files for your diskless
clients.

Note: in order to enable network support already at boot time, you have recom-
pile GRUB bootloader of your diskless clients to include drivers for their network
cards. Precompiled versions of GRUB for various network cards can be found
on Kerrighed web pages (http://kerrighed.gforge.inria.fr/download/grub/). There,
each “pxegrub” file has a name of a network driver which is included into it, as its
suffix. Patches which include support for some of the network cards into GRUB
can also be found on GRUB mailing lists.

3.1.2 Configuring DHCP server

Below, an example of /etc/dhcp3/dhcpd.conf DHCP server configuration file is
shown:

XtreemOS–Integrated Project 10/32

D2.2.7 IST-033576

DHCP server settings for LinuxSSI
#
PART 1
GRUB magic
option grub-menu code 150 = string;
General options
option dhcp-max-message-size 2048;
use-host-decl-names on;
deny unknown-clients;
deny bootp;
PART 2
option domain-name "xlabcluster.lan";
option ntp-servers ntp.network.net;
PART 3
subnet 192.168.1.0 netmask 255.255.255.0 {
option routers 192.168.1.1;
option subnet-mask 255.255.255.0;
option broadcast-address 192.168.1.255;
option domain-name-servers 192.168.1.1;
range 192.168.1.100 192.168.1.254;
default-lease-time 21600;
max-lease-time 43200;

}
PART 4
group {
filename "/pxegrub.via";
option grub-menu = concat("(nd)/grub/", _

host-decl-name);
option root-path "/NFSROOT/LinuxSSI";
host worker1 { fixed-address 192.168.1.101; _

hardware ethernet 00:04:61:AA:6E:6E; _
next-server 192.168.1.1; }

host worker2 { fixed-address 192.168.1.102; _
hardware ethernet 00:04:61:AA:70:95; _
next-server 192.168.1.1; }

}

Part 1 of the configuration contains some basic settings for DHCP server and
GRUB bootloader and you should leave them unchanged. In part 2, the domain
name for the local subnet and Network Time Protocol (NTP) server are set. Here,
it is sensible that you set only domain name and leave NTP server unchanged.

The part 3 contains configuration of a sub-network on which LinuxSSI cluster
will be located. By setting it you prevent your DHCP server to interfere with other

11/32 XtreemOS–Integrated Project

IST-033576 D2.2.7

parts of LAN (i.e. computers on the local network that don’t belong to LinuxSSI
cluster). If you have special DHCP server reserved just for Kerrighed, you gener-
ally don’t want this server to assign IP addresses to the computers that don’t belong
to LinuxSSI cluster. Here, you specify the IP addresses of the gateway and DNS
server for your local subnetwork.

In part 4, you should list all the computers that are a part of your LinuxSSI
cluster. For each computer, you should specify a MAC address of its network card
(i.e. hardware ethernet, for some motherboards you can find MAC addresses in
BIOS by choosing the following sequence of options: Integrated Peripherals →
Onboard devices→ VIA Lan MAC Address Input), IP that should be assigned to it
(i.e. fixed-address) and a server which will be in charge of providing system image
for network booting (i.e.next-server, this is usually the DHCP server itself). This
section also contains:

• a path to the PXE-enabled GRUB bootloader (i.e. filename). This path is rel-
ative to the TFTP daemon root (TFTP daemon root is set in /etc/default/tftp-
hpa). To create a PXE-enabled GRUB bootloader, you have to compile it
with "–enable-diskless" configuration switch enabled and with proper net-
work card driver included. You can also get a precompiled version of PXE-
enabled GRUB’s from Kerrighed web page, as described above,

• a path to GRUB menu for each diskless node (i.e. grub-menu). This path is
also relative to TFTP daemon,

• an absolute path to the root node of the system image (i.e. root-path). All
the diskless nodes in LinuxSSI share the same system image.

3.1.3 Configuring NFS server

Here, we only determine which part of the system will be shared in which way.
Most of it will be shared as read-only, except for “/tmp”, “/var”, “/dev” and “/root”,
which will be shared as read-write (we will be able to read and write to those
directories). Edit file /etc/exports to add the following lines:

/NFSROOT/LinuxSSI *(ro,async,no_root_squash, \
no_subtree_check)

/NFSROOT/LinuxSSI/tmp *(rw,sync,no_root_squash, \
no_subtree_check)

/NFSROOT/LinuxSSI/var *(rw,sync,no_root_squash, \
no_subtree_check)

/NFSROOT/LinuxSSI/dev *(rw,sync,no_root_squash, \
no_subtree_check)

/NFSROOT/LinuxSSI/root *(rw,sync,no_root_squash, \
no_subtree_check)

XtreemOS–Integrated Project 12/32

D2.2.7 IST-033576

Once you have configured DHCP, TFTP and NFS servers, restart them to apply
modifications:

/etc/init.d/dhcp3-server restart
/etc/init.d/tftpd-hpa restart
/etc/init.d/nfs-kernel-server restart

3.1.4 Create and configure system image for diskless nodes

The next step is to install image of the system which will be used by diskless
nodes. Below, you can see a list of commands that have to be executed in order to
accomplish that:

mkdir /NFSROOT
debootstrap sid /NFSROOT/LinuxSSI \

http://ftp.debian.org/debian
chroot /NFSROOT/LinuxSSI
mkdir /config
passwd
mount -t proc none /proc
apt-get install dhcp3-common nfs-common nfsbooted
apt-get install initramfs-tools

The most important command here is “debootstrap”. This is Debian-specific
command, which takes care of downloading all Debian operating system from re-
mote server and installs it into the specified directory. After successful installation,
user has to chroot to the directory with the newly created image, set the root pass-
word and install all the necessary tools for performing network boot.

The next step is to edit the /etc/fstab file (note that this is actually the “/NFS-
ROOT/LinuxSSI/etc/fstab” file, but since we changed root node to “/NFSROOT/LinuxSSI”,
we must disregard that part of the path). Here you insert all the directories that
should be mounted during boot time of every diskless node, including the ones
that are mounted via NFS (here, we assume 192.168.1.1 is IP address of your NFS
server).

13/32 XtreemOS–Integrated Project

IST-033576 D2.2.7

A swap partition
/dev/hda none swap sw 0 0
none /proc proc defaults 0 0
none /sys sysfs defaults 0 0
the line below mounts ConfigFS file system which
is needed by the PPSPF framework
none /config configfs defaults 0 0
#
NFSROOT
Following partitions are mounted in rw mode, for
the moment, I have some troubles with lockd
daemon that’s why I added the ’nolock’ params
192.168.1.1:/NFSROOT/LinuxSSI/dev /dev nfs \

rw,hard,nolock 0 0
192.168.1.1:/NFSROOT/LinuxSSI/var /var nfs \

rw,hard,nolock 0 0
192.168.1.1:/NFSROOT/LinuxSSI/tmp /tmp nfs \

rw,hard,nolock 0 0
192.168.1.1:/NFSROOT/LinuxSSI/root /root nfs \

rw,hard,nolock 0 0
#
TMPFS
none /var/run tmpfs defaults 0 0

Create symbolic link to “/etc/network/if-up.d/mountnfs” script in order to au-
tomatically mount all the NFS-shared directories. By default, this mounting is per-
formed when network interface is set up. But since the network interface is enabled
from the beginning, when performing network boot, the scripts in “/etc/network/if-
up.d” are never executed. To solve this issue we have to create a symbolic link in
“/etc/rcS.d” directory.

ln -sf ../network/if-up.d/mountnfs \
/etc/rcS.d/S35mountnfs

Finally, include IP’s and hostnames of all the computers that are members of
LinuxSSI cluster (the server as well as all the diskless clients) in file /etc/hosts:

127.0.0.1 localhost.localdomain localhost
192.168.1.1 server.xlabcluster.lan server
192.168.1.101 worker1.xlabcluster.lan worker1
192.168.1.102 worker2.xlabcluster.lan worker2

XtreemOS–Integrated Project 14/32

D2.2.7 IST-033576

3.2 LinuxSSI source download

Once we have establish the NFSRoot infrastructure we can start downloading Lin-
uxSSI source code. We recommend source code to be stored somewhere inside
system image for diskless nodes (i.e. the “/NFSROOT/LinuxSSI” directory tree),
since this is the place where we will later perform LinuxSSI installation. So before
you start downloading, do a chroot to “/NFSROOT/LinuxSSI” directory.

Before you start downloading, create a directory into which you will download
sources (for example "/root/LinuxSSI-src") and move into it:

mkdir /root/LinuxSSI-src
cd /root/LinuxSSI-src

Download LinuxSSI source code from INRIA XtreemOS Gforge and copy it
in the current directory. The archive is available at the following address:

https://gforge.inria.fr/frs/download.php/3668/linuxssi-0.9-alpha.tar.gz

Download Linux 2.6.20 kernel source code from kernel.org or a valid mirror:

wget http://www.kernel.org/pub/linux/kernel/v2.6/\
linux-2.6.20.tar.bz2

Decompress the Tarballs:

tar xzf linuxssi-0.9-alpha.tar.gz
tar xjf linux-2.6.20.tar.bz2

3.3 LinuxSSI installation

3.3.1 Prerequisites

In order to successfully compile LinuxSSI source code you must have the following
Linux tools installed:

• automake (version 1.9 or newer),

• autoconf (version 2.59 or newer),

• libtool,

• rsync,

• pkg-config,

15/32 XtreemOS–Integrated Project

https://gforge.inria.fr/frs/download.php/3668/linuxssi-0.9-alpha.tar.gz

IST-033576 D2.2.7

• gcc (version 3.3.x is recommended, although LinuxSSI compiles also with
version 4.1)

The tools below are not mandatory, however it’s good to install them as well:

• lsb-release: installs LinuxSSI startup scripts into /etc/init.d. These scripts
are used for automatically load LinuxSSI module at boot time,

• xmlto: a tool to create man pages of LinuxSSI commands.

Note: since we will be installing LinuxSSI in the system image for diskless
nodes, please make sure that you have chrooted to the “/NFSROOT/LinuxSSI”
directory before you start installing all the tools mentioned above.

3.3.2 Installation

Below, you can find a list of commands that have to be executed in order to per-
form installation of LinuxSSI. First, you go to directory where you uncompressed
LinuxSSI source files:

cd /root/LinuxSSI-src

Next, configure the sources:

cd linuxssi-0.9-alpha
./configure --with-kernel=/root/LinuxSSI-src/\

linux-2.6.20

Next, patch the Linux kernel source with LinuxSSI:

make patch
make defconfig

Next, check the configuration of the Linux kernel (network card driver for in-
stance):

cd /root/LinuxSSI-src/linux-2.6.20
make menuconfig
cd -

Next, build the sources and install them as root:

XtreemOS–Integrated Project 16/32

D2.2.7 IST-033576

make kernel
make
make kernel-install
make install

This list of commands should successfully install LinuxSSI to your system
image for diskless nodes. In case you have some problems, you should check Ker-
righed mailing lists (http://www.kerrighed.org/wiki/index.php/Contact) and bug tracker
(http://gforge.inria.fr/tracker/?group_id=69), where you could find a solution.

If the installation was successful, you should have 3 files in “/boot” directory
of your system image for diskless nodes:

• vmlinuz-2.6.20-krg

• System.map-2-6-20-krg

• config-2.6.20

In the same directory, you should also create a RAM disk for the new kernel.
This is an initial root file system that is mounted before the real root file system is
available. It is loaded as a part of kernel boot procedure. Here is how to create it:

cd /boot
mkinitramfs -o initrd.img-2.6.20-krg 2.6.20-krg

When this is done, exit from the chrooted environment and copy the 4 files to
the root directory of your TFTP server:

exit
cp /NFSROOT/LinuxSSI/boot/vmlinuz-2.6.20-krg \

/var/lib/tftpboot
cp /NFSROOT/LinuxSSI/boot/System.map-2.6.20-krg \

/var/lib/tftpboot
cp /NFSROOT/LinuxSSI/boot/config-2.6.20-krg \

/var/lib/tftpboot
cp /NFSROOT/LinuxSSI/boot/initrd.img-2.6.20-krg \

/var/lib/tftpboot

3.3.3 Configuration

After we have successfully installed LinuxSSI, we have to make a “/var/lib/tftpboot/grub”
directory. In it, we create a separate GRUB menu file for each diskless node (note:

17/32 XtreemOS–Integrated Project

http://www.kerrighed.org/wiki/index.php/Contact
http://gforge.inria.fr/tracker/?group$_$id=69

IST-033576 D2.2.7

filename of the grub file has to match the hostname of the corresponding node).
GRUB file for “worker1” node (i.e. “/var/lib/tftpboot/grub/worker1” file) is shown
as an example:

default 0
timeout 5

title LinuxSSI
root (nd)
kernel /vmlinuz-2.6.20-krg root=/dev/nfs ip=dhcp \

nfsroot=192.168.1.1:/NFSROOT/LinuxSSI node_id=0 \
session_id=0

initrd /initrd.img-2.6.20-krg

Other nodes’ GRUB files are very similar to the one above. They differ only
in “node_id” boot parameter, which represents LinuxSSI node ID. This has to be
unique for every node in the cluster.

Once you have LinuxSSI properly installed, boot all the diskless nodes via net-
work. Log to each of the nodes and check that LinuxSSI module was successfully
loaded on it. This is done by using “lsmod” command. If LinuxSSI module is
loaded on a particular node, its name will be present in the list of modules lsmod
prints out. If this is not the case, you can still load it by invoking modprobe ker-
righed command.

After you have made sure LinuxSSI module is loaded on all the diskless nodes,
you can start LinuxSSI cluster by invoking krgadm cluster start command on one
of the nodes.

XtreemOS–Integrated Project 18/32

Chapter 4

User’s guide
4.1 Overview about using LinuxSSI

For basic usage of LinuxSSI, you can refer to Kerrighed documentation:

• Kerrighed User Manuel:
http://www.kerrighed.org/wiki/index.php/V2.1.0_User_Manual

• Man pages of Kerrighed commands that can be consulted either with man
command like for any Unix command or on the web page:
http://www.kerrighed.org/wiki/index.php/UserDoc#Man_pages

4.2 Using advanced features of LinuxSSI

The following features are only available in LinuxSSI.

4.2.1 Using kDFS

The kernel Distributed File System aims at federating storage resources within a
cluster in order to provide an integrated cluster file system for High Performance
Computing. Design, implementation and current status of the first prototype is
addressed in a distinct deliverable [7]. This section relates procedures to exploit a
kDFS file system. The first paragraph addresses the mkfs.kdfs command, the
second focuses on mounting a kDFS partition.
Note: Kerrighed has to be started to set/exploit a kDFS structure.

Formatting a kDFS partition
Associated to kDFS, a dedicated command, mkfs.kdfs has been implemented.

This command formats a directory which can be used afterward in the kDFS phys-
ical structure. This command is released with the current kDFS prototype. Its
syntax is the following one:

19/32

http://www.kerrighed.org/wiki/index.php/V2.1.0_User_Manual
http://www.kerrighed.org/wiki/index.php/UserDoc#Man_pages

IST-033576 D2.2.7

mkfs.kdfs DIRECTORY_PATHNAME ROOT_NODEID

DIRECTORY_PATHNAME: Absolute path to store kDFS meta-data an data.
ROOT_NODEID: kDFS root node id, localization of the kDFS root meta-data file.

mkfs.kdfs creates the kDFS ”superblock” file for the node. This file is
stored on the local native file system at DIRECTORY_PATHNAME if KERRIGHED_NODEID
equals ROOT_NODEID, mkfs.kdfs creates the root meta-file which is the clus-
terwide entry point for the kDFS physical structure.

The table 4.1 describes creation of a kDFS structure distributed between two
nodes:

On node A: (kerrighed nodeid = 1) on Node B: (kerrighed nodeid = 2)
mkfs.kdfs /KDFS 1 mkfs.kdfs /ANOTHER-KDFS 1
Create kDFS local superblock Create kDFS local superblock
Create kDFS root meta-file

Table 4.1: Create a kDFS structure between two nodes
Mounting a kDFS partition

The mount command is the traditional one. We have still not extended it with
specific kDFS parameters. Thus, for the moment, There are few limitations:

• One kDFS partition per node

• Only one mount point per node

• Diskless mechanisms not available

Users can mount a kDFS partition by the following command:

mount -t kdfs ALLOCATED_DIRECTORY MOUNT_POINT

ALLOCATED_DIRECTORY: native file system directory formatted with mkfs.kdfs
MOUNT_POINY: traditional mount point.

The table 4.2 describes kDFS mounting procedure from two nodes:

On node A: (kerrighed nodeid = 1) on Node B: (kerrighed nodeid = 2)
mount -t kdfs /KDFS
/mnt/kfds

mount -t kdfs /ANOTHER-KDFS
/mnt/kdfs

/mnt/kdfs is now a global kDFS namespace for both nodes

Table 4.2: Mount kDFS partitions

Finally, kDFS documentation is available on the Kerriged web site. Please visit
http://www.kerrighed.org/wiki/index.php/KernelDevelKdFS

XtreemOS–Integrated Project 20/32

http://www.kerrighed.org/wiki/index.php/KernelDevelKdFS

D2.2.7 IST-033576

4.2.2 Taking advantage of the global scheduler

In the first implementation phase of XtreemOS project, we have implemented the
Pluggable Probes and Scheduling Policies (PlugProPol) framework [4]. It is an
infrastructure which enables user to write his own probes and scheduling policies
and add them to the system in runtime (without the need to restart the whole clus-
ter). If a user wants, for example, to monitor disk usage on his local machine, he
only implements a proper probe and plugs it to PlugProPol in runtime. This makes
the scheduling much more configurable since no reboot is needed.

All the probes and scheduling policies are implemented as Linux kernel mod-
ules, they run in kernel space and are able to access kernel data structures directly.
No system calls are needed, which means such infrastructure induces less overhead
than the one where probes and scheduling policies would be implemented in user
space.

Since PlugProPol framework is based on ConfigFS file system, all its oper-
ations such as probes/scheduling policies loading and unloading, linking can be
performed from user space using standard linux commands such as mkdir, rm, ln.
This chapter contains a list of Linux commands which can be used with PlugProPol
framework, along with their descriptions and examples of usage.

mkdir

Syntax: mkdir <module_name>

Arguments:

• <module_name>: name of the probe/scheduling policy module to load. This
name must be equal to the name of the module file (the one with the “.ko”
extension) which implements given probe/scheduling policy.

Description: by invoking this command a user requests PlugProPol framework to
load a given probe or scheduling policy. In order to initiate probe loading, user has
to invoke this command in /config/probes directory. Similarly, he has to invoke the
command in /config/schedulers directory if he wants to load scheduling policy.

Probes and scheduling policies should be implemented as linux kernel mod-
ules [13] and should register themselves with PlugProPol framework in their ini-
tialization function. For an example of how to write a proper probe or schedul-
ing policy see “mem_probe.c” and “echo_policy.c” in the Appendix. Once the
probe/scheduling policy is loaded with PlugProPol the framework itself takes care
of performing measurements (for the probes) and collecting them (for scheduling
policies).

In order for a user to be able to load a particular probe or scheduling pol-
icy module with PlugProPol, he must first register it. This is done by inserting full

21/32 XtreemOS–Integrated Project

IST-033576 D2.2.7

path to the module file (the one with the “.ko” extension) to the /lib/modules/<ker-
righed_kernel_version>/modules.dep file, followed by a colon and full path to
“kerrighed.ko” module file. Below you can see example entries for “mem_probe”
and “echo_policy” (note that both path to the probe/scheduling module file and
path to the “kerrighed.ko” file must be written in the same line for each entry):

/lib/modules/2.6.20-krgLinuxSSI/extra/mem_probe.ko: \
/lib/modules/2.6.20-krgLinuxSSI/extra/kerrighed.ko

/lib/modules/2.6.20-krgLinuxSSI/extra/echo_policy.ko: \
/lib/modules/2.6.20-krgLinuxSSI/extra/kerrighed.ko

Example:

! load mem_probe probe
mkdir /config/krg_scheduler/probes/mem_probe

! load echo_policy scheduling policy
mkdir /config/krg_scheduler/schedulers/test-scheduler
mkdir /config/krg_scheduler/schedulers/test-scheduler/\

echo_policy

rmdir

Syntax:

• rmdir <module_name>

• rm -rf <module_name>

Arguments:

• <module_name>: name of the probe/scheduling policy to unload. This
name must be equal to the name of the module file (the one with the “.ko”
extension) which implements given probe/scheduling policy.

Description: this command is used for unloading probe or scheduling policy mod-
ule that was loaded with mkdir command. Similarly to mkdir, the rmdir command
has to be invoked invoked either in /config/probes directory for probes or in /con-
fig/schedulers directory for scheduling policies.

Example:

XtreemOS–Integrated Project 22/32

D2.2.7 IST-033576

! unload mem_probe probe
rmdir /config/krg_scheduler/probes/mem_probe

! unload echo_policy scheduling policy
rmdir /config/krg_scheduler/schedulers/\

test-scheduler/echo_policy

echo

Syntax: echo <value> > <attribute_name>

Arguments:

• <value>: the value which we want to assign to a given attribute. It can be
given either in textual or in numerical form. If the value contains spaces it
has to be surrounded by double quotes („).

• <attribute_name>: the name of the attribute to which we want to assign
the value. The name must be given as an absolute path to the file which
represents the attribute.

Description: this command assigns a value to the attribute specified by the at-
tribute_name filename. Each attribute is represented by a separated file which is
located in of the subdirectories in “/config/probes” or “/config/schedulers” direc-
tory. The command enables user to set probe and scheduling policy parameters in
runtime and thus dynamically tune the scheduler.

Example:

! set probing period of mem_probe probe to 1 second.
echo 1000 > /config/krg_scheduler/probes/\

mem_probe/probe_period

cat

Syntax: cat <attribute_name>

Arguments:

• <attribute_name>: the name of the attribute whose value we want to re-
trieve. The name must be given as an absolute path to the file which repre-
sents the attribute.

23/32 XtreemOS–Integrated Project

IST-033576 D2.2.7

Description: this command retrieves a value of the attribute specified by the at-
tribute_name filename. Each attribute is represented by a separated file which are
located in of the subdirectories in “/config/probes” or “/config/schedulers” direc-
tory. The command enables user to get probe and scheduling policy parameters
and is mostly used for reading properties of resources monitored by the probes.

Example:

! get total memory from mem_probe probe
cat /config/krg_scheduler/probes/mem_probe/\

ram_total/value

! get total memory from echo_policy scheduling policy
cat /config/krg_scheduler/schedulers/test-scheduler/\

echo_policy/port_mem_total/value

ln -s

source and sink must be directories (cannot link attributes).
Syntax: ln -s <data_source> <data_sink>

Arguments:

• <data_source>: source endpoint of the link which will provide us the data.
This must be a directory (i.e. we cannot make symbolic links to attributes).

• <data_sink>: sink endpoint of the link which will consume the data. Like
data_source, this must also be a directory (i.e. we cannot make symbolic
links to attributes).

Description: by invoking the “ls -s” command, a user can connect one PlugProPol
entity to another. By doing this he enables the “sink” entity to collect data from the
“source” entity.

Only the connections that are defined below are possible:

• scheduling policy to probe,

• filter to probe,

• filter to another filter,

• scheduling policy to filter.

As soon as particular data source and sink are connected, PlugProPol frame-
work takes care of data transfer between them.

XtreemOS–Integrated Project 24/32

D2.2.7 IST-033576

Example:

! link port_mem_total endpoint of echo_policy
! scheduling policy to ram_total endpoint
! of mem_probe probe
ln -s /config/krg_scheduler/probes/mem_probe/ram_total \

/config/krg_scheduler/schedulers/test_scheduler/\
echo_policy/port_mem_total

! link port_mem_free endpoint of echo_policy scheduling
! policy to ram_free endpoint of mem_probe probe
ln -s /config/krg_scheduler/probes/mem_probe/ram_free \

/config/krg_scheduler/schedulers/test_scheduler/\
echo_policy/port_mem_free

4.2.3 Adding and removing node(s) in the cluster

Design, implementation and current status of the first prototype is addressed in a
distinct deliverable [6].

The command used to manage node(s) addition and node(s) removal in the
cluster is krgadm.

krgadm provides to the user a unique command to monitor the status of the
cluster, to start a cluster, to make node(s) join or leave the cluster.

Nodes are identified either by their nodes’ id, either by their MAC addresses.
Administrator can start a cluster with all the available nodes (Kerrighed mod-

ule loaded) with the following command:

krgadm cluster start

To add some nodes in a running cluster, for instance nodes 16 and 18, the fol-
lowing command must be used by the administrator:

krgadm nodes add -n16:18

To remove some nodes in a running cluster, for instance nodes 21 and 34, the
following command must be used by the administrator:

krgadm nodes del -n21:34

More information can be found with man krgadm or krgadm -h. Some
options described in krgadm manual or help are not yet implemented.

25/32 XtreemOS–Integrated Project

IST-033576 D2.2.7

4.2.4 Checkpointing/Restarting application

Before the checkpoint and restart functionality can be used some prerequisites have
to be met.

First, the directory /var/chkpt must be created by the administrator with read and
write permission enabled. After successfully taking a checkpoint, a directory will
be created under the mentioned directory. The PID of the checkpointed process
serves as directory name.

Second, a so called capability has to be set. Certain system features can be en/disabled
with capabilities. Such a capability has to be switched on for checkpointing to
work. The command for enabling the checkpointing functionality is:

krgcapset -d +CHECKPOINTABLE

This command must be executed in the shell on which the process to be check-
pointed will be started.

A checkpoint is created by issuing the following command:

checkpoint PID

After successfully taking a checkpoint, a directory (checkpointed process’ PID as
directory name) should have been created under /var/chkpt. The following files will
be created in this directory each including the serial number (SN) of the checkpoint
in their name, e.g. ’4711’ for the file names mentioned below:

• description_v4711.txt (ascii file): short overview description of all files be-
longing to the checkpoint.

• global_v4711.bin (binary file): app_kddm_object KDDM object values as
the applicationID, the serial number of the checkpoint and the kerrighed
node mask.

• node_5_v4711.bin (binary file): description of local tasks involved in the
checkpoint. The sample file belongs to node 5.

• task_234_v4711.bin (binary file): per task (e.g. PID=’234’) kernel structures
such as registers, stack, signal mask, ...

• task_mm_234_v4711.bin (binary file): all pages of the process address space.

Repeated checkpointing of an application results in multiple files with the same
base name but an SN increased by one at each time acheckpoint is taken. Check-
points taken at different times can thus be distinguished.

XtreemOS–Integrated Project 26/32

D2.2.7 IST-033576

An application is restarted by executing the following command:

restart PID SN

Providing a SN allows to specify one out of many checkpoints taken during appli-
cation execution.

For an application consisting of two or more processes, each of them having parent-
child relationship, the PID of the common ancestor has to be provided to the restart
command.

27/32 XtreemOS–Integrated Project

IST-033576 D2.2.7

XtreemOS–Integrated Project 28/32

Chapter 5

Conclusion

LinuxSSI prototype described in this document is the result of the work in WP2.2
during the first 18 months of XtreemOS project. LinuxSSI has been developed
based on Kerrighed technology in close collaboration with the key developers driv-
ing the Kerrighed open source community.

LinuxSSI leverages Kerrighed V2.2.0 extending it with the following features:
kDFS, a distributed file system exploiting disks attached to cluster nodes, Plug-
ProPol, a Pluggable Probes and Scheduling Policies framework allowing to dy-
namically load and unload scheduling policies without stopping the cluster, Hot-
Plug, an infrastructure for the automatic reconfiguration of LinuxSSI distributed
services when a system administrator requests a hot node addition or removal, a
checkpoint/restart interface to store and restore the state of applications executed
on top of LinuxSSI. These features, while being operational, should not be consid-
ered yet as production level software. XtreemOS consortium is actively pushing
these features in the Kerrighed open source community to get them accepted in
the Kerrighed mainstream development and integrated in Kerrighed releases. Lin-
uxSSI can thus be considered as a research version of a Linux SSI operating sys-
tem, Kerrighed being the production version. This document accompanying Lin-
uxSSI software provides its installation and user manuals. LinuxSSI is packaged
for RPM based Linux distributions in the framework of workpackage WP4.1.

Concerning LinuxSSI roadmap, one of our tasks is to improve the stability of
the current LinuxSSI prototype. We will benefit from the feed-back of participants
in WP4.2, who will experiment a number of applications on top of the current Lin-
uxSSI prototype. In parallel, we plan in the very short term to integrate LinuxSSI
and Linux-XOS mechanisms in order to build LinuxSSI-XOS, the foundation layer
of the XtreemOS cluster flavour. We have started to adapt LinuxSSI kernel check-
pointer to be used by the AEM service in XtreemOS-G. We have also started to de-
sign and implement LinuxSSI advanced features. Among these advanced features,
we can cite the implementation of the DRMAA job submission interface on top of
LinuxSSI, of file striping and redundancy in kDFS, of kDFS dynamic reconfigura-
tion when the cluster configuration changes, of Infiniband high speed interconnect

29/32

IST-033576 D2.2.7

support, of IPC object checkpoint/recovery, of reconfiguration mechanisms to al-
low LinuxSSI services to tolerate network link and node failures. We also plan to
isolate KDDM mechanisms in order to push them in the mainstream Linux kernel
development and to progressively remove limitations to LinuxSSI scalability.

As the collaboration with Kerrighed key developers has been very successful
(avoiding duplication of work in particular) until now, so far we will continue to
work in the same way in the following months for all the functionalities that we
intend to push in Kerrighed mainstream development. This is essential for the
exploitation of the LinuxSSI features in the future.

XtreemOS–Integrated Project 30/32

Bibliography

[1] Kerrighed on nfsroot. http://www.kerrighed.org/wiki/index.php/Kerrighed_on_NFSROOT.

[2] XtreemOS consortium. Specification of federation resource management
mechanisms, November 2006.

[3] XtreemOS consortium. Design and implementation of a customizable sched-
uler. Deliverable D2.2.6, November 2007.

[4] XtreemOS consortium. Design and implementation of a customizable sched-
uler. Deliverable D2.2.6, November 2007.

[5] XtreemOS consortium. Design and implementation of basic check-
point/restart mechanisms in linuxssi. Deliverable D2.2.3, November 2007.

[6] XtreemOS consortium. Design and implementation of basic reconfiguration
mechanisms. Deliverable D2.2.4, November 2007.

[7] XtreemOS consortium. Design and implementation of high performance disk
input/output operations in a federation. Deliverable D2.2.5, November 2007.

[8] XtreemOS consortium. Design and implementation of scalable mechanisms
in linuxssi. Deliverable D2.2.2, November 2007.

[9] Pascal Gallard. Conception d’un service de communication pour systèmes
d’exploitation distribué pour grappes de calculateurs: mise en oeuvre dans
le système à image unique Kerrighed. Thèse de doctorat, IRISA, Université
de Rennes 1, IRISA, Rennes, France, December 2004.

[10] Kerrighed website. http://www.kerrighed.org. http://www.kerrighed.org.

[11] Renaud Lottiaux. Gestion globale de la mémoire physique d’une grappe pour
un système à image unique : mise en œuvre dans le système Gobelins. Thèse
de doctorat, IRISA, Université de Rennes 1, December 2001.

[12] Christine Morin, Renaud Lottiaux, Geoffroy Vallée, Pascal Gallard, David
Margery, Jean-Yves Berthou, and Isaac Scherson. Kerrighed and data par-
allelism: Cluster computing on single system image operating systems. In
Proc. of Cluster 2004. IEEE, September 2004.

31/32

IST-033576 D2.2.7

[13] O. Pomerantz P. Salzman, M. Burian. The linux kernel module programming
guide. http://www.tldp.org/LDP/lkmpg/2.6/htm1/book1.
htm, 2001.

[14] Geoffroy Vallée. Conception d’un ordonnanceur de processus adaptable
pour la gestion globale des ressources dans les grappes de calculateurs :
mise en oeuvre dans le système d’exploitation Kerrighed. Thèse de doctorat,
IFSIC, Université de Rennes 1, France, March 2004.

XtreemOS–Integrated Project 32/32

http://www.tldp.org/LDP/lkmpg/2.6/htm1/book1.htm
http://www.tldp.org/LDP/lkmpg/2.6/htm1/book1.htm

