
! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

Franz J. Hauck
Institute of Distributed Systems, University of Ulm

Deterministic Scheduling
for Replicated Systems

1

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

1 Active Replication

! Simultanous execution of invocation requests in all replicas

" Problem

Replicas have to be kept consistent!

Client

Replica

Invocation

Object

Replica

Replica

2

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

1.1 Consistency of Replicas

! Requirement

all replicas have to reach the same internal state

$ Deterministic execution of invocations

" Sources of non-determinism in replicas

different order of request processing

• different order of incoming requests

• different scheduling of worker threads

• different arrival time of nested invocation responses

local invocation of non-deterministic operations or functions

• e.g. random(), getTimeOfDay(), getPID() ...

3

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

1.1 Consistency of Replicas (2)

$ Totally-ordered multicast

solves problems due to order of incoming requests or received responses

• same order for all messages communicated to all replicas

$ Mapping of non-deterministic operations to nested invocations

all replicas receive the same result of a single operation

! Focus of this talk:

deterministic scheduling of worker threads for concurrent invocation requests

4

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

2 Overview

! Introduction

! Approaches to deterministic scheduling

sequential scheduling

SLT — Single Logical Thread

SAT — Single Active Thread

ADETS/SAT — SAT Extension for condition variables

LSA — Loose Synchronization Algorithm

PDS — Preemptive Deterministic Scheduling

ADETS/MAT — Multiple Active Threads

! Conclusion

5

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

3 Sequential Scheduling

! Sequential processing of invocation requests

next invocation is processed after the previous one was finished

" Disa vantage

bad utilisation of the CPU for nested invocations

• undesired waiting time

6

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

3 Sequential Scheduling

! Sequential processing of invocation requests

next invocation is processed after the previous one was finished

" Disa vantage

bad utilisation of the CPU for nested invocations

• undesired waiting time

deadlock for self-invocations

• execution at the own object blocks forever
Object

6

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

3 Sequential Scheduling

! Sequential processing of invocation requests

next invocation is processed after the previous one was finished

" Disa vantage

bad utilisation of the CPU for nested invocations

• undesired waiting time

deadlock for self-invocations

• execution at the own object blocks forever

deadlock for mutual invocations

• two objects call each other and are stuck in a
deadlock, as each object waits for the response
of its request

Object

Object Object

6

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

3 Sequential Scheduling (2)

$ Advantage

no additional communication for consistency

simple implicit coordination

! Standard in simple systems

e.g. GroupPac, OGS

7

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

3.1 Summary

Seq

no additional
communication %

no circular deadlocks &

no mutual deadlocks &

good CPU utilisation &

8

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

4 SLT — Single Logical Thread

! Detection of circular invocations

context information for each invocation

• e.g., thread ID

return of the same context information identifies circular invocation

! Behaviour like in sequential scheduling, but

if current request processing is blocked due to a nested invocation, a circular
request can be inserted

" Other problems persist

! Example

Eternal

9

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

4.1 Summary

Seq SLT

no additional
communication % %

no circular deadlocks & %

no mutual deadlocks & &

good CPU utilisation & &

10

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

5 SAT — Single Active Thread

! Per invocation there is a single processing thread

in principle concurrent, but only one thread is allowed to run at each point
in time

" Requires deterministic thread switches in each replica

! Coordination of concurrent threads

necessary for data consistence, even in non-replicated case

possible mechanisms for coordination:

• Semaphores, Monitors, ...

$ Idea: utilise coordination for consistency of replicas

i.e. deterministic thread switches at coordination points

! Example

Jimenez-Peris et al., Zhao et al.

11

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

5.1 Summary

" Additional disadvantage

originally no algorithm for monitor-based coordination with condition variables

e.g. for Java-like coordination

Seq SLT SAT

no additional
communication % % %

no circular deadlocks & % %

no mutual deadlocks & & %

good CPU utilisation & & %

condition variables & & &

12

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

6 ADETS/SAT — Single Active Thread

! ADETS = Aspectix Deterministic Thread Scheduling

ADETS/SAT = SAT-Scheduling with monitor-based coordination

6.1 Insertion: Java Coordination

! Binary Semaphores

each Java object is a binary semaphore

implicit locking and unlocking by synchronized statements

synchronized(obj) {
// do something nice

}

implicit locaking and unllocking by synchronized methods

synchronized void mymethod(int i) {
// do something nicer

}

13

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

6.1 Insertion: Java-Koordinierung (2)

! Condition variable

in Java there is one implicit condition variable per object/semaphore

wait(): thread releases lock and blocks for waiting

notifiy(): wakes up a one of the blocked threads,
notifiyAll(): wakes up all blocked threads

Example: Bounded-Buffer

class BoundedBuffer { // ...
synchronized int get() {

while(/* buffer empty */)
wait();

// take something out of buffer
return something;

}
synchronized void put(int something) {

// put something into buffer
notify();
return;

}
} 14

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

6.2 Deterministic Thread Switching

! Potential switching points

thread creation for processing a new requrest

thread termination

nested invocaton

reception of a response of a nested invocation

lock request

lock release

time slice end

priority changes

! Let’s exclude time slices and priority changes

all worker threads have same priority

15

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

6.2 Deterministic Thread Switching (2)

! Problem

request order is exactly defined, but not there arrival time

i.e., replicas can have made different progress

i.e., deterministic strategy has to decide the same regardless how far the local
replica is

$ Utilise coordination

non-deterministic processing of uncoordinated code sections is allowed

coordinated code section have to be executed in the same order in all replicas

16

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

6.3 ADETS/SAT Scheduling Algorithm

! Schematic algorithm

if there is no thread running and a request comes in, a new thread will be started

if a thread is running an a request comes in, the request is enqueued in a
message queue (MsgQueue)

if a thread has finished, a deterministic scheduling decision is made:

• a new worker thread is started for a request from the MsgQueue

Up to now: Sequential Scheduling

17

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

6.3 ADETS/SAT Scheduling Algorithm

! Schematic algorithm

if there is no thread running and a request comes in, a new thread will be started

if a thread is running an a request comes in, the request is enqueued in a
message queue (MsgQueue)

if a thread has finished, a deterministic scheduling decision is made:

• a new worker thread is started for a request from the MsgQueue OR

• process response in MsgQueue by waking up thread waiting for that
response

Up to now: Sequential Scheduling

if there is a nested invocation, the thread will be blocked and a deterministic
scheduling decision is made

if there arrives a response for a nested invocation it is enqueued into MsgQueue

Up to now: SAT without coordination
Order of messages determines scheduling decisions

17

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

6.3 ADETS/SAT Scheduling Algorithm (2)

! Schematic algorithm (cont.)

if a thread locks a semaphore and

• the semaphore is free, it will be locked

• the semaphore is locked, the thread will be blocked and enqueed into a
request queue (ReqQueue) and a deterministic scheduling decision is made

if a thread unlocks a semaphore, this will be registered;
thread switching is delayed to the next scheduling decision to be made

extension of the scheduling decision:

• if there is a lock request in ReqQueue and the lock is free, the lock will be
granted and the thread is deblocked (this choice has to be the first option)

Up to now: SAT with binary semaphores

18

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

6.3 ADETS/SAT Scheduling Algorithm (3)

! Schematic algorithm (cont.)

if a thread calls wait() on a semaphore, the thread will be enqueued into a
thread queue (WaitQueue) and blocked, the lock will be released and a
scheduling decision is made

if a thread calls notify() or notifyAll(), the corresponding threads from
WaitQueue are dequeued and enqueued in a deterministic order into
ReqQueue

Up to now: SAT with binary semaphores and condition variables

19

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

6.4 Summary

" Disadvantage so far

no parallelism, i.e., no utilisation of multiprocessors and multi-core systems

Seq SLT SAT A/SAT

no additional
communication % % % %

no circular deadlocks & % % %

no mutual deadlocks & & % %

good CPU utilisation & & % %

condition variables & & & %

parallelism & & & &

20

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

7 LSA — Loose Synchronization Algorithm

! Leader follower model (Basile et al.)

a designated replica memorises scheduling decisions

• e.g., lock granting order

designated replica sends out decision to all other replicas

other replicas decide not before leader has send its decisions

• all lock request block in the beginning

" Disadvantage:

additional communication overhead

higher latency

intricate failure recovery

$ Advantage

multiple threads can get different locks granted at the same time

21

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

7.1 Summary

Seq SLT SAT A/SAT LSA

no additional
communication % % % % &

no circular deadlocks & % % % %

no mutual deadlocks & & % % %

good CPU utilisation & & % % %

condition variables & & & % &

parallelism & & & & %

parallel lock granting %

22

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

8 PDS — Preemptive Deterministic Scheduling

! Round-based algorithm (Basile et al.)

fixed number of threads

in each round threads run until they terminate or request a lock

at the start of a new round:

• lock requests are deterministically granted

• new threads are started from a request queue until the fixed number is
reached

several optimisations, e.g. in another version at most two locks can be granted
within one round

23

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

8 PDS — Preemptive Deterministic Scheduling

" Disadvantage

fixed number of threads

if there are not enough requests, others have to wait (!)

otherwise the system can inject dummy requests

$ Advantage

no additional messages

multiple threads can acquire different locks at the same round

24

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

8.1 Summary

Seq SLT SAT A/SAT LSA PDS

no additional
communication % % % % & %

no circular deadlocks & % % % % %

no mutual deadlocks & & % % % %

good CPU utilisation & & % % % %

condition variables & & & % & &

parallelism & & & & % %

parallel lock granting % %

arbitrary thread number % &

25

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

9 ADETS/MAT — Multiple Active Threads

! Extension of the ADETS/SAT Algorithm for concurrent threads (Reiser et al.)

! Idea

primary thread behaves like the single thread of the ADETS/SAT algorithm

• it can acquire locks

secondary threads can run concurrently and uncoordinated

• but cannot acquire locks

switch from secondary to primary status is deterministic

a PrimaryCandidateQueue contains incoming requests sorted by the group
communication system

! Coordination

like ADETS/SAT with Java like coordination with condition variable

26

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

9 ADETS/MAT — Multiple Active Threads (2)

$ Advantage

no additional messages

arbitrary number of concurrent threads

• can be mapped to multiple cores or processors

" Disadvantage

only one thread can aqcuire locks at a time

thread does only hand off primary status on termination or nested invocation

• for some applications not relevant

• for others fatal

27

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

9.1 Summary

Seq SLT SAT A/SAT LSA PDS A/MAT

no additional
communication % % % % & % %

no circular deadlocks & % % % % % %

no mutual deadlocks & & % % % % %

good CPU utilisation & & % % % % %

condition variables & & & % & & %

parallelism & & & & % % %

parallel lock granting % % &

arbitrary thread number % & %

28

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

9.1 Summary (2)

Seq SLT SAT A/SAT A/LSAA/PDSA/MAT

no additional
communication % % % % & % %

no circular deadlocks & % % % % % %

no mutual deadlocks & & % % % % %

good CPU utilisation & & % % % % %

condition variables & & & % % % %

parallelism & & & & % % %

parallel lock granting % % &

arbitrary thread number % & %

29

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

10 Conclusion

! Deterministic thread scheduling for active-replicated services/objects

introduction of available algorithms

! XtreemOS Virtual Nodes

contains implementations of all available algorithms

including extensions for Java-like coordination
(monitor with at least one condition variable)

• ADETS/PDS, ADETS/LSA

$ Further Work

a new better algorithm is in the queue

adaptive and deterministic switch between different algorithms

• optimisation of certain parameters: response time, throughput ...

30

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

10 Conclusion (2)

! Further application domains of deterministic schedulers

passive replication

• failover sometimes based on outdated checkpoints

• replay of missed invocation requests needs to be deterministic

debugging of non-interactive applications

• e.g. long-running HPC applications

31

! 2010, Franz J. Hauck, Distributed Systmes, Ulm Univ., [DetSched-Talk.fm, 2010-07-08 09.26]

11 Finally ...

Questions?

32

	1 Active Replication
	1.1 Consistency of Replicas

	2 Overview
	3 Sequential Scheduling
	3.1 Summary

	4 SLT — Single Logical Thread
	4.1 Summary

	5 SAT — Single Active Thread
	5.1 Summary

	6 ADETS/SAT — Single Active Thread
	6.1 Insertion: Java Coordination
	6.2 Deterministic Thread Switching
	6.3 ADETS/SAT Scheduling Algorithm
	6.4 Summary

	7 LSA — Loose Synchronization Algorithm
	7.1 Summary

	8 PDS — Preemptive Deterministic Scheduling
	8.1 Summary

	9 ADETS/MAT — Multiple Active Threads
	9.1 Summary

	10 Conclusion
	11 Finally ...

