XtreemOS

Enabling Linux for the Grid

Security and Virtual Organisation Management in XtreemOS

Alvaro Arenas STFC Rutherford Appleton Laboratory, UK

XtreemOS Summer School, Oxford, September 2010 *XtreemOS IP project is funded by the European Commission under contract IST-FP6-033576*

- Security Concepts
- Grid Security
 - OGSA Security
 - Grid Security Infrastructure

Security and VO Management in XtreemOS

- XtreemOS Security Services
- XtreemOS Trust Model
- XtreemOS Single Sing-On and Delegation
- Isolation
- Concluding Remarks

Computer security deals with the prevention and detection of unauthorised actions by user of a computer system

Security

Keep the bad guy out

XtreemOS

- Authentication; firewalls, ...
- Let him in, but keep him from doing damage
 - Access control; sandboxing; ...
- Keep everybody out
 - Isolation; ...
- Catch him and prosecute him
 - Monitoring; auditing; ...

Security in Operating Systems

- Identification and authentication
 - Be sure about the identity of the user
- Process management
 - Protect one process from another
- Memory management
 - Protect the memory of one process from another
- File management
 - Protect the files owned by each user
- Audit controls
 - Log security-sensitive operations and report them to administrators
- Recovery
 - Allow system recovery if security breach occurs

XtreemOS

Enabling Linux for the Grid

Security in Grids

• Grids concern with ...

- "Coordinated resource sharing and problem solving in dynamic, multiinstitutional virtual organisations."
 - From the "Anatomy of the Grid"

So Grid Security is security to enable Virtual Organisationss

- Access to shared services/resources
- Cross-domain authentication, authorisation, accounting, billing
- May contain individuals acting alone their home organisation administration need not necessarily know about all activities
- Leave resource owner always in control

XtreemOS

Enabling Linux for the Grid

Security in a Grid OS

- Native support for VO management
 - XtreemOS embeds VO-management functionalities into the Linux kernel
- Leverage OS security support to protect resources
 - XtreemOS exploits OS isolation capabilities (Linux containers) to provide strong isolation and fine-grained control of resource usage
 - Map VOs policies into access control policies

Transparent security management

- Flexible management of certificates, making its operation as transparent as possible for end users
- Scalability in security
 - Separate resource management from VO and user management

XtreemOS

Enabling Linux for the Grid

- Security Concepts
- Grid Security
 - OGSA Security
 - Grid Security Infrastructure

Security and VO Management in XtreemOS

- XtreemOS Security Services
- XtreemOS Trust Model
- XtreemOS Single Sing-On and Delegation
- Isolation
- Concluding Remarks

Virtual Organisations

• A VO is

XtreemOS

Enabling Linux for the Grid

- a temporary or permanent coalition of geographically dispersed and autonomous participants
 - including individual and/or organisations,
- who agree to share resources in the system in order to fulfill their tasks
 - e.g. running jobs, sharing applications, accessing data

Properties

- Geographically distributed
- Autonomously governed
- Short-termed or long-term
- Static or dynamics

- VOs are used as a bridge to provide a Grid security solution based on trust
 - The extent to which a participant can rely on others to behave
- Establishing trust
 - Personal recommendations
 - Reputation from trusted sources
 - Cryptographic verification of the information given

XtreemOS Enabling Linux for the Grid

- An entity uses computer programs to cryptographically verify the information given
 - If everything is ok, then trust of the information is established
 - Otherwise, there is not trust

- Public key encryption
 - Users possess public/private key pairs
 - Anyone can encrypt with the public key, only one person can decrypt with the private key

Certification Authorities (CAs)

- The CAs are responsible for certifying the public keys of different users who subscribe to the CA
 - Guarantee the connection between a key and an end entity
- CAs are entities that are trusted by different systems
- An end entity is
 - Person, role ("Director of marketing"), organisation, pseudonym, a piece of hardware or software, an account (bank or credit card)
- CA manages key lifecycle: creation, store, delete, renew

XtreemOS

OGSA Security

Secure functionality should be cast as services

 allowing applications to locate and use the particular functionality they need

Leverage on existing and emerging WS security standards

- Authentication service;
- Identity mapping service
- Authorisation service;
- VO Policy service;
- Credential conversion service;
- Audit service; etc

XtreemOS

Enabling Linux for the Grid

- A reference specification for Grid security architectures
- Protocols and APIs to address Grid security needs
- Based on public-key encryption technology
 - SSL protocol for authentication, message protection
 - X.509 certificates
- Each user as a Grid id, a private key, and a certificate signed by a CA
- First implementation in the Globus Toolkit

High-Level View of GSI

XtreemOS

Enabling Linux for the Grid

- Certificate-based authentication (PKI)
- GSI certificate includes information such as
 - Subject name;
 - public key belonging to the subject;
 - Identity of the CA; and
 - Digital signature of the named CA
- Certificates are obtained via established protocols

Single Sign On and Delegation

Jobs require access to multiple resources

- To authenticate with your certificate directly you would have to type a passphrase every time
- Need to automate access to other resources: Authenticate Once
 - Important for complex applications that need to use Grid resources
 - Allows remote processes and resources to act on user's behalf also known as delegation
 - Also you need a way to send you VO details (Groups membership, roles and capabilities) across
- Solution adopted in the GSI: proxy certificates
 - A temporary key pair
 - in a temporary certificate signed by your 'long term' private key
 - valid for a limited time (default: 12 hours), but can be renewed

XtreemO

Enabling Linux for the Grid

> XtreemOS IP project is funded by the European Commission under contract IST-FP6-033576

17

- Security Concepts
- Grid Security
 - OGSA Security
 - Grid Security Infrastructure

Security and VO Management in XtreemOS

- XtreemOS Security Services
- XtreemOS Trust Model
- XtreemOS Single Sing-On and Delegation
- Isolation
- Concluding Remarks

XtreemOS System

A XtreemOS system consists of

XtreemOS

Enabling Linux for the Grid

- A set of **resource machines** from one or more participants
 - Offering resources through a set of foundation-level node services
- A set of Grid-wide system services
- A set of VOs to support cross-machine resource sharing and logical isolation of resource usage within the system

A user of a XtreemOS system is defined as another system

- Including humans or separated autonomous software systems
- Interacts with the current system through a set of well-defined interfaces.

Virtual Organisation Manager Service (X-VOMS)

XtreemOS

Building Up Trust in XtreemOS

XVOMS Certificate

XtreemOS

Enabling Linux for the Grid

- XVOMS has a self-signed certificate representing the root certificate of the system
- The private counterpart is used by CDA to sign end-entity certificates for users and subordinated RCAs

User registration with XVOMS

- Each user shares a secret (i.e. password) with XVOMS
- User obtain XVOMS public key certificate through established password-based mutual authentication protocols
- There is not need of pre-installed certificate

RCA registration with XVOMS

- Each RCA is registered with a XVOMS and is given a shared secret with XVOMS
- Mutually authenticate with XVOMS with any pre-installed certificate
- Machine registration with RCA

- User management is separated from resources management
- Scalability in resource management
- Main difference with classical PKI trust models resides in the set up of trust
 - In classical PKI models, trusted root CA certificates are distributed through offline means
 - In XtreemOS, certificates could be created on-the-fly and disseminated through online protocols
- SSO and Delegation
 - Not depending on proxy certificates

Grid Management Capabilities

XtreemOS

Enabling Linux for the Grid

XtreemOS VO Management Capabilities Enabling Linux USer Site

VO Management Capabilities (Resource Site)

XtreemOS

Enabling Linux for the Grid

VO Management Capabilities (VO Termination Phase)

XtreemOS

Policy Management in XtreemOS

Dealing with four type of policies

User; resource;

XtreemOS

Enabling Linux for the Grid

- VO; and filtering policies
- XACML as policy language
- Policies are evaluated at
 - Selection time: to ensure that resources selected are suitable
 - Access time: to control access to resources

Single Sign-On and Delegation

Single Sing-On

XtreemOS

Enabling Linux for the Grid

- As a distributed OS, XtreemOS services trust each other
- Once user credentials are validated by a XtreemOS service, they can be used by other XtreemOS services without additional validation

Underpinning technology

- A trusted credential store service is associate to each user session.
 - Authenticate the user when he opens a session,
 - Collect and validate all user credentials,
 - Forward all grid requests (xsub, xps, etc.) from the user to XtreemOS services
- There is not need of proxy certificates

Delegation, exploiting similar technology

- A credential store services is associated to jobs on the same resource node
- Once job credentials are validated, they can be used in other XtreemOS services
- Key technology for interactive jobs

client

manager

client

Information Society Technologies

Isolation in XtreemOS

- Basic idea: Put each job (PAM session) into a resource container
 - A resource container could be seen as a virtual machines in a local OS instance
 - A resource container allows fine-grained, isolated and strong control of resource usage of a job (could be a hierarchy of processes)
- Features: Full-fledged control of resource usage by VOs
 - CPU: Assignment of cores, bandwidth/percentage/ priority/walltime allocation
 - Memory: virtual/physical/swap memory limitation
 - Disk I/O: disk i/o bandwidth limitation
 - Network: network bandwidth/traffic limitation

XtreemOS

Enabling Linux for the Grid

What we achieve now?

In advanced version of VO-support, what new features have been embedded in based on cgroup mechanism?

XtreemOS

Snapshot of subsystem functionalities

Disk quota limitation

XtreemOS

- Record the usage of allocated file inode
- Record the usage of allocated disk block

• Limit created file number	🛃 root@testbed0:/tmp	
	[root@testbedO test]#	~
	[root@testbedO test]# cd /tmp/	
<pre># echo 4 > disk.max_usage_in_inode</pre>	[root@testbedO tmp]# touch test1 [root@testbedO tmp]# touch test2	
	[root@testbed0 tmp]# touch test3	
	[root@testbedO tmp]# touch test4	
	[root@testbedO tmp]# touch test5	
	touch: cannot touch `test5': Disk quota exceeded	-
	[root@testbedO tmp]#	~
	💣 root@testbed0:/tmp	
 Limit allocated file block (3*4096) 	[root@testbed0 tmp]#	<u>^</u>
	[root@testbedU tmp]#	
<i>"</i> , , , , , , , , , , , , , , , , , , ,	[root@testbed0 tmp]# echo "test file 1" >> test1 [root@testbed0 tmp]# echo "test file 2" >> test2	
# echo 1288 > disk.max_usage_in_block	<pre>[root@testbed0 tmp]# echo "test file 3" >> test3</pre>	
	<pre>[root@testbed0 tmp]# echo "test file 4" >> test4</pre>	
	bash: echo: write error: Disk quota exceeded	
	[root@testbedO tmp]#	
	[rootgtestbedU tmp]#	×
	XtreemOS IP project	****
formation Society is funded by th	e European Commission under contract IST-FP6-033576	****
Technologies		

- Security Concepts
- Grid Security
 - OGSA Security
 - Grid Security Infrastructure
- Security and VO Management in XtreemOS
 - XtreemOS Security Services
 - XtreemOS Trust Model
 - XtreemOS Single Sing-On and Delegation
 - Isolation
- Concluding Remarks

Security in XtreemOS

Scalable VO management

- Independent user and resource management
- Interoperability with VO management frameworks and security models
- Customizable isolation, access control and auditing
- Very Dynamic VOs
 - Short-lived VOs created automatically for the duration of an application/workflow
 - Multi-users
 - Lightweight configuration of resources
 - Predefined policies (VO-based)

XtreemOS

Enabling Linux for the Grid

Security in XtreemOS

Improving usability

- Local resource administrator: autonomous management of local resources
- VO administrator: flexibility management of credential and VO policies
- End user: login as a Grid user into a VO; the Grid should be as much as possible invisible
- Secure and reliable application execution
 - Fine-grained control of resource usage

XtreemO

On-going and Future Work

Traceability

XtreemO

Information Society Technologies

- Exploiting tokens for traceability in SSO
- Security monitoring and auditing
 - Rule-based monitoring systems; including aggregation of events and logs for auditing purpose
- Interoperability by using third-party identity providers
 - Shibboleth; myProxy
- Evaluating how to adapt some services for the Cloud
 - Identity as a service

- This work is a summary of the work carried out in XtreemOS WP2.1 and WP3.5 work packages
 - INRIA: Christine Morin, Yvon Jegou
 - ICT: Haiyan Yu
 - **SAP:** Philip Robinson
 - STFC: Benjamin Aziz, Ian Johnson, Brian Matthews, Erica Yang
 - XLAB: Matej Artac

XtreemOS

Enabling Linux for the Grid

Security and Virtual Organisation Management in XtreemOS

Alvaro Arenas STFC Rutherford Appleton Laboratory, UK

XtreemOS Summer School, Oxford, September 2010 *XtreemOS IP project is funded by the European Commission under contract IST-FP6-033576*